On Ramsey Minimal Graphs

نویسندگان

  • Vojtech Rödl
  • Mark H. Siggers
چکیده

A graph G is r-ramsey-minimal with respect to Kk if every rcolouring of the edges of G yields a monochromatic copy of Kk, but the same is not true for any proper subgraph of G. In this paper we show that for any integer k ≥ 3 and r ≥ 2, there exists a constant c > 1 such that for large enough n, there exist at least c 2 non-isomorphic graphs on at most n vertices, each of which is r-ramsey-minimal with respect to the complete graph Kk. Furthermore, in the case r = 2, we give an asymmetric version of the above result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

Minimum Degrees of Minimal Ramsey Graphs

For graphs F and H, we say F is Ramsey for H if every 2-coloring of the edges of F contains a monochromatic copy of H. The graph F is Ramsey H-minimal if there is no proper subgraph F ′ of F so that F ′ is Ramsey for H. Burr, Erdős, and Lovász defined s(H) to be the minimum degree of F over all Ramsey H-minimal graphs F . Define Ht,d to be a graph on t+ 1 vertices consisting of a complete graph...

متن کامل

On Ramsey (K1, 2, C4)-minimal graphs

For graphs F , G and H , we write F → (G, H) to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H . The graph F is Ramsey (G, H)-minimal if F → (G, H) but F ∗ 9 (G, H) for any proper subgraph F ∗ ⊂ F . We present an infinite family of Ramsey (K1,2, C4)-minimal graphs of any diameter ≥ 4.

متن کامل

On Ramsey (3K2,P3)-minimal graphs

For any given two graphs G and H, we use the notation F→(G,H) to mean that in any red-blue coloring of the edges of F , the following must hold: F contains either a red subgraph G or a blue subgraph H. A graph F is a Ramsey (G,H)minimal graph if F→(G,H) but F∗ 6→(G,H) for any proper subgraph F∗ of F . Let R(G,H) be the class of all Ramsey (G,H)-minimal graphs. In this paper, we derive the prope...

متن کامل

Minimal Ordered Ramsey Graphs

An ordered graph is a graph equipped with a linear ordering of its vertex set. A pair of ordered graphs is Ramsey finite if it has only finitely many minimal ordered Ramsey graphs and Ramsey infinite otherwise. Here an ordered graph F is an ordered Ramsey graph of a pair (H,H ′) of ordered graphs if for any coloring of the edges of F in colors red and blue there is either a copy of H with all e...

متن کامل

Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

For graphs F and H, we say F is Ramsey for H if every 2-coloring of the edges of F contains a monochromatic copy of H. The graph F is Ramsey H-minimal if F is Ramsey for H and there is no proper subgraph F ′ of F so that F ′ is Ramsey for H. Burr, Erdős, and Lovász defined s(H) to be the minimum degree of F over all Ramsey H-minimal graphs F . Define Ht,d to be a graph on t + 1 vertices consist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008